Computational Study of the Dispersively Modified Kuramoto-Sivashinsky Equation
نویسندگان
چکیده
We analyze and implement fully discrete schemes for periodic initial value problems for a general class of dispersively modified Kuramoto–Sivashinsky equations. Time discretizations are constructed using linearly implicit schemes and spectral methods are used for the spatial discretization. The general case analyzed covers several physical applications arising in multi-phase hydrodynamics and the emerging dynamics arise from a competition of long-wave instability (negative diffusion), short–wave damping (fourth order stabilization), nonlinear saturation (Burgers nonlinearity) and dispersive effects. The solutions of such systems typically converge to compact absorbing sets of finite dimension (i.e., global attractors) and are characterized by chaotic behavior. Our objective is to employ schemes which capture faithfully these chaotic dynamics. In the general case the dispersive term is taken to be a pseudo-differential operator which is allowed to have higher order than the familiar fourth order stabilizing term in Kuramoto–Sivashinsky equation. In such instances we show that first– and second–order time–stepping schemes are appropriate and provide convergence proofs for the schemes. In physical situations when the dispersion is of lower order than the fourth order stabilization term (for example a hybrid Kuramoto–Sivashinsky–Korteweg–deVries equation also known as the Kawahara equation in hydrodynamics), higher order time–stepping schemes can be used and we analyze and implement schemes of order six or less. We derive optimal order error estimates throughout and utilize the schemes to compute the long time dynamics and to characterize the attractors. Various numerical diagnostic tools are implemented, such as the projection of the infinite–dimensional dynamics to one–dimensional return maps that enable us to probe the geometry of the attractors quantitatively. Such results are only possible if computations are carried out for very long times (we provide examples where integrations are carried out for 10 time units), and it is shown that the schemes used here are very well suited for such tasks. For illustration, computations are carried out for third order dispersion (the Kawahara equation) as well as fifth order dispersion (the Benney–Lin equation) but the methods developed here are applicable for rather general dispersive terms with similar accuracy characteristics.
منابع مشابه
Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملLinearly implicit schemes for multi-dimensional Kuramoto–Sivashinsky type equations arising in falling film flows
This study introduces, analyses and implements space-time discretizations of two-dimensional active dissipative partial differential equations such as the Topper–Kawahara equation; this is the two-dimensional extension of the dispersively modified Kuramoto–Sivashinsky equation found in falling film hydrodynamics. The spatially periodic initial value problem is considered as the size of the peri...
متن کاملApplication of Daubechies wavelets for solving Kuramoto-Sivashinsky type equations
We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition. Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method. The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method.
متن کاملRigorous Numerics for Dissipative Partial Differential Equations II. Periodic Orbit for the Kuramoto-Sivashinsky PDE-A Computer-Assisted Proof
We present a method of self-consistent a-priori bounds, which allows to study rigorously dynamics of dissipative PDEs. As an application present a computer assisted proof of an existence of a periodic orbit for the Kuramoto-Sivashinsky equation ut = (u )x− uxx− νuxxxx, u(t, x) = u(t, x + 2π), u(t, x) = −u(t,−x),
متن کاملOn the Stochastic Kuramoto-Sivashinsky Equation
In this article we study the solution of the Kuramoto–Sivashinsky equation on a bounded interval subject to a random forcing term. We show that a unique solution to the equation exists for all time and depends continuously on the initial data.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 34 شماره
صفحات -
تاریخ انتشار 2012